

# Signal Generator

SSG-8N12G-RC

50Ω

8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

#### **THE BIG DEAL**

- Cost effective X-band signal generator
- High output power, +23 dBm
- · Excellent harmonics & phase noise
- CW, pulsed, AM, FM & chirp outputs
- · Compact design for bench top use
- · Power over Ethernet (PoE) enabled
- Daisy-chain for multi-module dynamic control

#### **APPLICATIONS**

- Semiconductor high power burn-in & life testing
- Benchtop signal generator
- Automated production test systems
- X-band radar testing
- Quantum computing



Generic photo used for illustration purposes only

#### **PRODUCT OVERVIEW**

Mini-Circuits' SSG-8N12G-RC is a wide-band signal generator operating from 8 to 12.5 GHz. With up to +23 dBm typical output power, it is an ideal signal source for characterization of millimeter wave components and systems at high power. Configure CW / single-tone outputs, flexible pulse sequences, AM, FM and Chirp modulations, or automated frequency / power sweep & hop sequences.

SSG-8N12G-RC has been developed in a compact package with powerful software control and automation to provide a cost effective X-band signal generator and LO source for any bench or production test application. This is a high quality, repeatable and reliable signal source with low phase noise and excellent harmonic rejection.

The generator can be controlled via USB or Ethernet (supporting SSH, HTTP & Telnet protocols). Full software support is provided, including our user-friendly GUI application for Windows, flexible API and programming instructions for Windows and Linux environments. The daisy-chain control interface with "dynamic addressing" simplifies control integration and allows multiple units to be combined into a multi-channel signal source with control through a single software interface.

### **KEY FEATURES**

| Feature                                     | Advantages                                                                                                                                                                                                    |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High quality signal source                  | Outstanding combination of fine frequency and power resolution, low phase noise and excellent harmonic rejection, and low spurious signals in a compact package; suited to a wide range of test applications. |
| Flexible pulse, AM, FM and Chirp modulation | Configure various analog modulations according to your needs                                                                                                                                                  |
| Sweep & Hop sequences                       | Configure custom CW output frequency and power sequences to run unaided for high speed, automated test applications.                                                                                          |
| USB & Ethernet control                      | USB HID and Ethernet (HTTP / Telnet / SSH) interfaces provide easy compatibility with a wide range of software setups and programming environments.                                                           |
| Dynamic daisy-chain control                 | Simplify control software and interconnections and develop low-cost, multi-channel signal generator systems by daisy-chaining multiple units with control through a single interface.                         |

#### Trademarks:

Windows is a registered trademark of Microsoft Corporation in the United States and other countries; Linux is a registered trademark of Linus Torvalds; Pentium is a registered trademark of Intel Corporation. Neither Mini-Circuits nor the Mini-Circuits products are affiliated with or endorsed by the owners of the referenced trademarks. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.



# Signal Generator

# SSG-8N12G-RC

50Ω

8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### **ELECTRICAL SPECIFICATIONS 1, +25°C**

| Parameter                         | Condition                   | Condition (GHz)       |     | Тур.  | Max.   | Unit |
|-----------------------------------|-----------------------------|-----------------------|-----|-------|--------|------|
| Output Frequency                  | -                           | -                     |     | -     | 12.5   | GHz  |
| Frequency Resolution <sup>2</sup> | 8 - 1                       | 2.5                   | _   | 1     | -      | Hz   |
| Frequency Accuracy                | Using intern                | al reference          | -   | ±1    | -      | ppm  |
| Return Loss                       | 8 - 1                       | 2.5                   | -   | -10   | -      | dB   |
| Output Power Max                  | 8 - 1                       | 2.5                   | +20 | +23   | -      | dBm  |
| Output Power Min                  | 8 - 1                       | 2.5                   | -   | -55   | -50    | dBm  |
| Power Resolution (nominal)        | 8 - 1                       | 2.5                   | -   | 0.1   | -      | dB   |
| Output Power Accuracy             | 8 - 12.5                    | -50 to +20 dBm        | -   | ±0.5  | ±1.0   | dB   |
| RF Output Leakage                 | 8 - 12.5                    | RF off                | -   | -80   | -      | dBm  |
| Harmonics                         | 8 - 12.5                    | -50 to +20 dBm        | -   | -30   | -      | dBc  |
| Nan Hamania Carriera              | Offsets 1 MHz to 150 MHz    |                       | -   | -70   | -60    | dBc  |
| Non-Harmonic Spurious             | Offsets 1 kHz to 1 MHz      | -50 to +20 dBm        | -   | -35   | -30    |      |
| Boundary Spurs                    | 8 - 12.5                    |                       | -   | -40   | -      |      |
|                                   | Hop mode <sup>5</sup>       | 8 - 12.5              | -   | 0.1   | 0.15   |      |
| Settling Time <sup>3, 4</sup>     | Frequency sweep             | 8 - 12.5              | -   | 0.1   | 0.15   | 1    |
| Settling Time %                   | PC (external) control       | PC (external) control |     | 2     | -      | ms   |
|                                   | Power transition(at set fre | quency)               | -   | 0.004 | -      |      |
| Dwell Time (nominal) 4,6          | -                           | -                     |     | -     | 10,000 | ms   |
| Phase Offset Range                | -                           | -                     |     | -     | 359    | doa  |
| Phase Offset Resolution           | -                           |                       | -   | 1     | -      | deg  |

<sup>1.</sup> Specifications are after 15 minutes warm-up time.

<sup>2.</sup> Frequency Resolution is tested with 10 MHz external reference.

<sup>3.</sup> Settling Time - transition time between 2 output states. During the transition, RF output is turned off to avoid transient outputs.

<sup>4.</sup> Generator response time is Dwell Time + Settling Time.
5. For hop sequences pre-loaded into internal memory (high-speed mode).
6. Dwell Time - duration of each signal point in a Sweep or Hop sequence set by user. Default is minimum dwell time.



# Signal Generator

SSG-8N12G-RC

50Ω

8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

## MODULATION SPECIFICATIONS, 7 +25°C

| Paramete                 | r                             | Condition                                                    |                            | Min.                  | Тур.                | Max. | Unit   |
|--------------------------|-------------------------------|--------------------------------------------------------------|----------------------------|-----------------------|---------------------|------|--------|
| Modulation               | n types                       |                                                              | AM, FM, Chirp, Pul         | se (Rising, Falling a | and bi-directional) |      |        |
| Max modul                | ation freq                    | 3                                                            | dB point                   | -                     | -                   | 5    | kHz    |
| FM Max de                | viation                       |                                                              | -                          | -                     | 50                  | -    | MHz    |
| AM Modula                | ation depth <sup>8</sup>      |                                                              | -                          | 0                     | -                   | 100  | %      |
| Chirp rate               |                               | Nominal value                                                |                            | 0.0015                | -                   | 20   | MHz/μs |
| Pulse Widt               | h Resolution                  | Nominal value                                                |                            | 0.05                  | -                   | -    | μs     |
| D. L. Maria              | I. 9 10                       | Measured at the                                              | Internal Pulse Modulation  | 5                     | -                   | 10e6 |        |
| Pulse Widt               | n <sup>3, 10</sup>            | 50% of pulse level                                           | External Pulse Modulation  | 5                     | -                   | 10e6 | μs     |
| D. I D. d.               | Measured at the               |                                                              | Internal Pulse Modulation  | 10                    | -                   | 10e6 |        |
| Pulse Perio              | Pulse Period (regular mode)   | 50% of pulse level                                           | External Pulse Modulation  | 10                    | -                   | 10e6 | μs     |
| Pulse                    | Fixed freq. & Power           | Manager det the FOO/                                         | -f                         | 7                     | -                   | 4e6  | μs     |
| interval 11              | Varying freq. & Power         | Measured at the 50%                                          | of pulse level             | 400                   | -                   | 4e6  |        |
| Pulse Rise               | / Fall Time <sup>12, 13</sup> | Measured between 10                                          | 0% and 90% of pulse level  | -                     | 60 / 30             | -    | ns     |
| Dl \\/: -l+              | <b>L. A.</b>                  | Measured at 50% of                                           | Internal pulse modulation  | -                     | ±10                 | -    | - %    |
| Pulse Widt               | h Accuracy <sup>14</sup>      | pulse level                                                  | External pulse modulation  | -                     | ±10                 | -    |        |
| External pu<br>threshold | Ilse modulation input         | External pulse modula                                        | External pulse modulation  |                       | -                   | -    | V      |
| T. D                     | Trigger edge to 50%           |                                                              | Internal pulse modulation  | -                     | 1                   | -    |        |
| Trigger Response Delay   |                               | of pulse level External pulse modulation                     | External pulse modulation  | -                     | 2                   | -    | μs     |
| Pulse Powe               | Datia                         | PWR <sub>OUT</sub> = +20 dBm, Ff                             | REQ <sub>OUT</sub> = 8 GHz | -                     | 70                  | -    | -ID    |
| Pulse Powe               | er rauo                       | PWR <sub>out</sub> = +20 dBm, FREQ <sub>out</sub> = 12.5 GHz |                            | -                     | 70                  | -    | – dB   |

<sup>7.</sup> Regular pulse mode has fixed frequency and power supporting internal and external modulation and input / output trigger options. Dynamic mode allows for flexible RF pulse sequences with varying frequency, power pulse width and pulse repetition interval (PRI).

### PHASE NOISE (SSB), +25°C

| Frequency       | Carrier Frequency (GHz) |        |        |        |        |        |
|-----------------|-------------------------|--------|--------|--------|--------|--------|
| Offset<br>(kHz) | 8                       |        | 10     |        | 12.5   |        |
|                 | Тур.                    | Max    | Тур.   | Max    | Тур.   | Max    |
| 1               | -94.5                   | -92.5  | -92.5  | -90.5  | -91.0  | -88.5  |
| 10              | -105.5                  | -103.0 | -101.0 | -112.5 | -101.5 | -99.0  |
| 100             | -113.5                  | -111.0 | -111.0 | -108.5 | -109.5 | -107.0 |
| 1,000           | -120.5                  | -117.5 | -118.5 | -116.0 | -111.5 | -109.0 |
| 10,000          | -144.0                  | -140.0 | -145.0 | -141.0 | -144.0 | -141.0 |
| Noise Floor     | -150.0                  | -146.0 | -150.0 | -146.0 | -150.0 | -146.0 |

<sup>8.</sup> In AM modulation, ensure there is sufficient margin between the carrier power and Generator's Min/Max power spec to allow generating the modulated signal without distortions. For example a modulation depth of 50% translates to power of +1.76 dB to -3.01 dB from the carrier.

<sup>9.</sup> Pulse Width in normal mode must be less than pulse period by at least 0.5 µs with Internal pulse modulation and by 2 µs in external pulse modulation. 10. Pulse Widths below 0.5 µs can be set, however performance is only guaranteed for the ranges noted in the table.

<sup>11.</sup> In dynamic mode.

<sup>12.</sup> Pulse rise time will increase with pulse interval under 3  $\mu$ s.

<sup>13.</sup> For signals at same power & frequency.

<sup>14.</sup> Pulse Width Accuracy is 3% of pulse width, or ±100 ns, whichever is greater.



# Signal Generator

SSG-8N12G-RC

50Ω

8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### REFERENCE, TRIGGER & DC POWER, +25°C

| Parameter                         | Co                       | Condition                |      | Тур. | Max. | Unit            |
|-----------------------------------|--------------------------|--------------------------|------|------|------|-----------------|
| Aging                             | Using internal reference | Using internal reference |      | 2    | _    | ppm/yr          |
|                                   | Frequency                | -                        | -    | 10   | _    | MHz             |
| Reference In                      | Power                    | -                        | -3.5 | -    | +7.5 | dBm             |
|                                   | Phase noise              | 10 kHz Offset            | -    | -135 | _    | dBc/Hz          |
|                                   | Frequency                | -                        | -    | 10   | _    | MHz             |
| Deference Out                     | Frequency accuracy       | Using internal reference | -    | ±1   | _    | ppm             |
| Reference Out                     | Power                    | -                        | -    | +10  | _    | dBm             |
|                                   | Phase noise              | 10 kHz Offset            | -    | -140 | _    | dBc/Hz          |
|                                   | Low                      | Low                      |      | -    | 0.4  | v               |
| Trigger Out 15                    | High                     | High                     |      | -    | 5.0  |                 |
|                                   | Pulse width              | Pulse width              |      | 100  | _    | μs              |
|                                   | Low                      | Low                      |      | -    | 0.4  |                 |
| Trigger In                        | High                     | High                     |      | -    | 5.0  | V               |
|                                   | Pulse width              |                          | -    | 1    | -    | μs              |
| Supply Voltage (V <sub>DC</sub> ) | DC I-                    |                          | 5.7  | 6.0  | 6.3  | V <sub>DC</sub> |
| Supply Current (I <sub>DC</sub> ) | DC II                    | put port 16              | -    | 2.2  | 2.8  | Α               |
| Supply Current (I <sub>DC</sub> ) | US                       | B port <sup>16</sup>     | -    | 20   | _    | mA              |
| Supply Voltage (V <sub>DC</sub> ) | LAN                      | nort 16 17               | 50   | 53   | 57   | V <sub>DC</sub> |
| Supply Current (I <sub>DC</sub> ) | LAN                      | port <sup>16, 17</sup>   | -    | 300  | 450  | mA              |

<sup>15.</sup> Trigger out voltage specified with impedance load of 10  $k\Omega$  minimum.

### **ABSOLUTE MAXIMUM RATINGS**

| Operating Temperature                | 0°C to 50°C                                |
|--------------------------------------|--------------------------------------------|
| Storage Temperature                  | -20°C to 60°C                              |
| Power in @ Reference in              | +10 dBm                                    |
| Reverse Voltage (DC) @ Reference out | 8 V <sub>DC</sub>                          |
| Reverse Voltage (DC) @ RF out        | 15 V <sub>DC</sub>                         |
| Reverse Power (RF) @ RF out          | +24 dBm                                    |
| Voltage input to trigger ports       | -0.3V <sub>DC</sub> to +5.5V <sub>DC</sub> |

Permanent damage may occur if any of these limits are exceeded. Operating in the range between operating power limits and absolute maximum ratings for extended periods of time may result in reduced life and reliability.

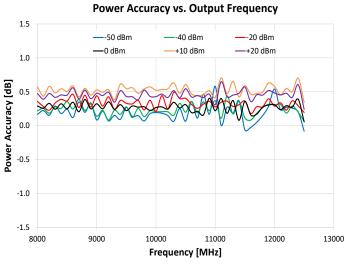
<sup>16.</sup> Model can not be powered via USB. Power must be provided via either 2.1mm DC Input or LAN port (using PoE systems).

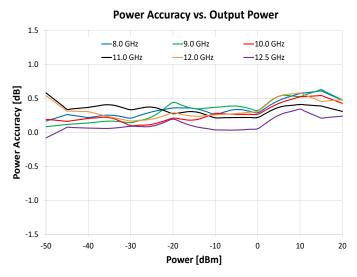
<sup>17.</sup> Compliant with IEEE 802.3at mode A and mode B.

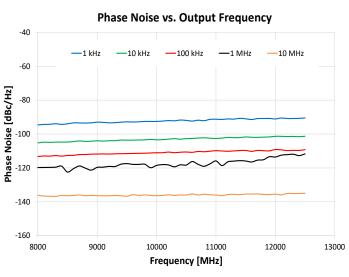


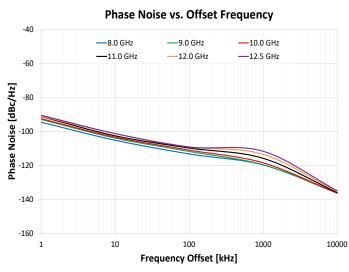
# Signal Generator

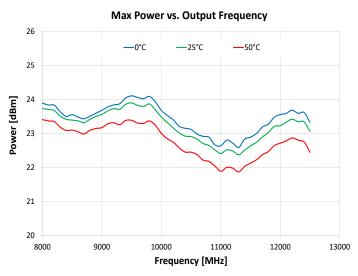
# SSG-8N12G-RC

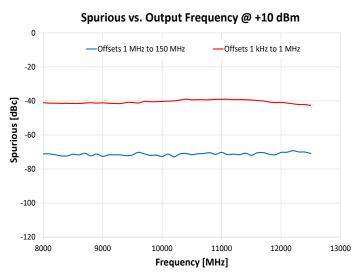

50Ω


8 to 12.5 GHz


-55 dBm to +23 dBm


**SMA Female** 


### **TYPICAL PERFORMANCE GRAPHS**









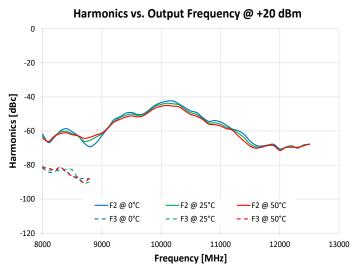


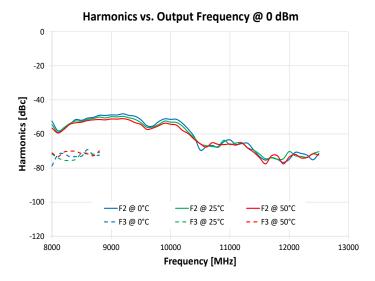


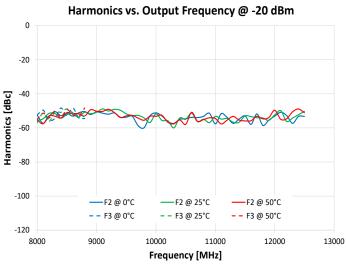


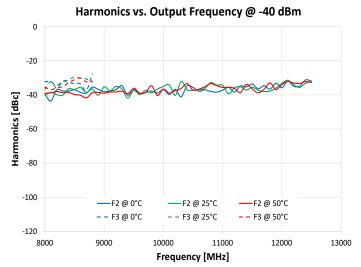

# Signal Generator

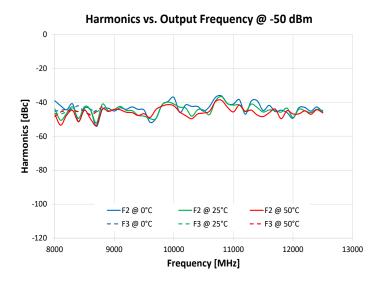
# SSG-8N12G-RC


50Ω


8 to 12.5 GHz


-55 dBm to +23 dBm


**SMA Female** 


### **TYPICAL PERFORMANCE GRAPHS (CONTINUED)**













# Signal Generator

SSG-8N12G-RC

50Ω

8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### **CONTROL INTERFACES**

| Ethernet Control | Supported Protocols                  | TCP / IP, HTTP, Telnet, SSH, DHCP, UDP (limited) |
|------------------|--------------------------------------|--------------------------------------------------|
|                  | Max Data Rate                        | 100 Mbps (100 Base-T Full Duplex)                |
| USB Control      | Supported Protocols                  | HID (Human Interface Device) - High-speed        |
|                  | Min Communication Time <sup>18</sup> | 400 μs typ (full transmit/receive cycle)         |

<sup>18.</sup> USB Min Communication Time is based on the polling interval of the USB HID protocol (125 μs polling interval, 64 bytes per packet), medium CPU load and no other high-speed USB devices using the USB bus.

### **SOFTWARE & DOCUMENTATION**

Mini-Circuits' full software and support package including user guide, Windows GUI, API, programming manual and examples can be downloaded free of charge (refer to the last page for the download path).

A comprehensive set of software control options is provided:

- GUI for Windows Simple software interface for control via Ethernet and USB.
- Programming / automation via Ethernet:
  - Complete set of control commands which can be sent via any supported protocol.
  - Simple to implement in the majority of modern programming environments.
- Programming / automation via USB:
  - DLL files provide a full API for Windows with a set of intuitive functions which can be implemented in any programming environment supporting .Net Framework or ActiveX.
  - Direct USB programming is possible in any other environment (not supporting .Net or ActiveX).

Please contact testsolutions@minicircuits.com for support.

#### **MINIMUM SYSTEM REQUIREMENTS**

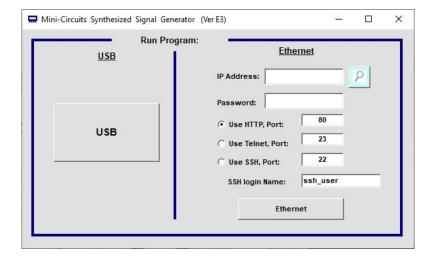
| GUI                    | Windows 7 or later                                                                           |
|------------------------|----------------------------------------------------------------------------------------------|
| USB API DLL            | Windows 7 or later and programming environment with ActiveX or .NET support                  |
| USB Direct Programming | Linux, Windows 7 or later                                                                    |
| HTTP, Telnet or SSH    | Any computer with a network port and Ethernet-TCP/IP (HTTP, Telnet or SSH protocols) support |
| Hardware               | Intel i3 (or equivalent) or later                                                            |



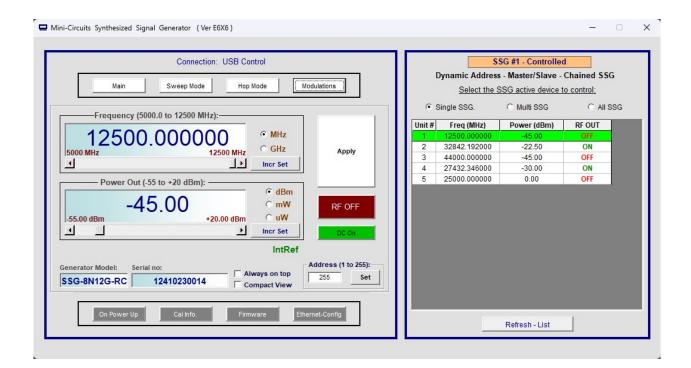
# Signal Generator

SSG-8N12G-RC

50Ω 8


8 to 12.5 GHz

-55 dBm to +23 dBm


**SMA Female** 

### **GRAPHICAL USER INTERFACE (GUI) FOR WINDOWS - KEY FEATURES**

- Connect via USB or Ethernet
- Password protected access for safe remote usage over Ethernet



- Configure output power, frequency, pulse modulation
- Program timed signal output sequences (linear sweep and frequency hop)
- Control timed sequences in multiple generators simultaneously
- Track unit operation time since last calibration and setup calibration reminders

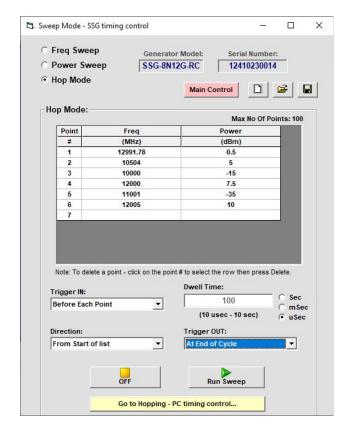




# Signal Generator

SSG-8N12G-RC

50Ω


8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### **AUTOMATED SWEEP / HOP SEQUENCES**

- Sweep across a frequency band at a fixed output power.
- · Sweep output power levels at a fixed frequency.
- Hop through a list of pre-defined frequency / power settings.
- Set dwell times down to 10 µs in high speed mode.
- · Run on demand or in response to external triggers.
- Produce triggers to signal switching points or completing a run.



### **MODULATION**

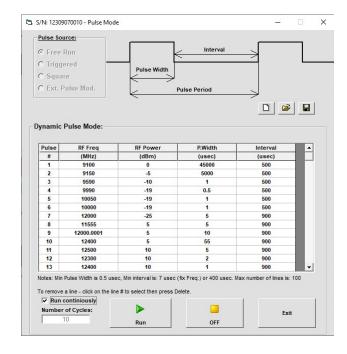
- · Select AM,FM, Chirp or Pulse modulation
- In the individual screens for each modulation specify the parameters for the modulated signal





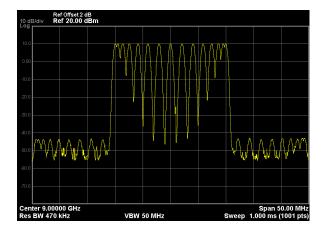
# Signal Generator

# SSG-8N12G-RC


 $50\Omega$  8 to 12.5 GHz

5 GHz -55 dBm to +23 dBm

**SMA Female** 


#### **DYNAMIC PULSE MODULATION**

- Configure repetitive pulsed output sequences.
- Define custom pulse lists with a different frequency, power, width & interval at each step.
- Set pulse widths down to 0.5 us.
- · Run continuously or for a preset number of cycles.



### **FREQUENCY MODULATION (FM)**

- Set carrier power and frequency.
- Set modulating signal frequency.
- Set desired FM deviation.
- Select Sine or triangle wave modulating signal.



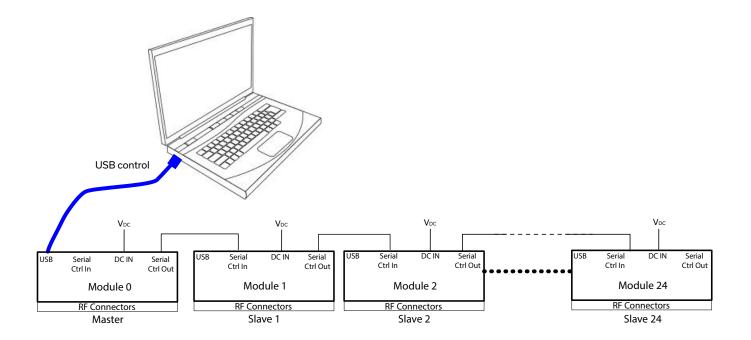




# Signal Generator

SSG-8N12G-RC

50Ω


8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### **CONNECTING MULTIPLE MODULES (DAISY CHAIN)**

The model is designed to connect up to 25 modules in series (daisy chain) using dynamic addressing, meaning there is no need to specifically set the address of the modules. The addresses will be set automatically as part of establishing the communications with the computer. The module connected to the computer's USB port or Ethernet connection will be assigned address 0 (master), the first module connected to it will get address 1 (slave) and subsequent modules incrementing up to address 24 (slave).



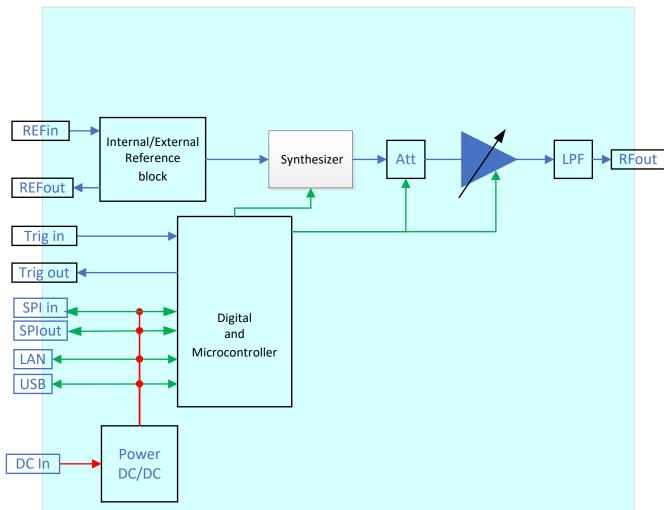
Connections between modules will be made using the serial in/out ports with the module connected to the PC act as a master and all other as slave modules. All control will be through the master module (address 0) which is the only one communicating with the PC or computer network. Serial control out port of each module should be connected to the serial control in port of the next module.

Power must be supplied to each module separately via their individual power supplies.

The serial master/slave bus allows connecting modules of different types to the same daisy chain as long as all support Mini-Circuits Dynamic addressing setup. To add a new module to the setup, simply connect the module and refresh the address listing, no need to reset any of the existing modules or assign addresses manually.



# Signal Generator


SSG-8N12G-RC

 $50\Omega$  8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### **BLOCK DIAGRAM**



### **CONNECTIONS**

| Port Name                           | Connector Type                |
|-------------------------------------|-------------------------------|
| RF output                           | SMA-Female                    |
| Reference in                        | J4 SMB-Male                   |
| Reference out                       | J5 SMB-Male                   |
| Trigger in                          | J3 SMB-Male                   |
| Trigger out                         | J2 SMB-Male                   |
| Power in <sup>19</sup>              | 2.1 mm DC socket              |
| USB port                            | USB type C female             |
| Network (Ethernet/LAN)              | RJ45 socket                   |
| Serial Out (Digital Control 1 port) | Digital Snap Fit Connector 20 |
| Serial In (Digital Control 2 port)  | Digital Snap Fit Connector 20 |

No power On/Off switch - SSG will power on as soon as power is connected, starting at the specified startup condition (factory default set to 12.5 GHz, -50 dBm, RF Off).

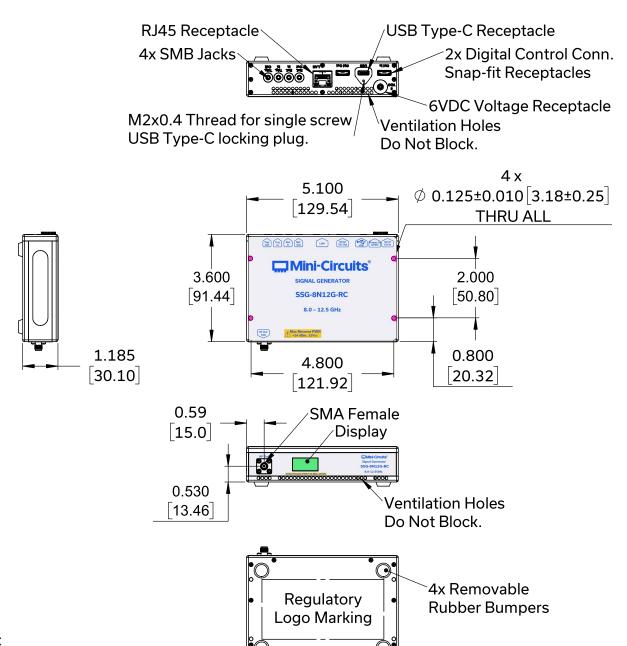


<sup>20.</sup> Mating connector is Hirose ST40X-10S-CV(30)



# Signal Generator

SSG-8N12G-RC


50Ω

8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### **OUTLINE DRAWING (SL3643)**



### NOTES:

- 1. Case material: Aluminum alloy.
- Case Finish: Nickel Plate.
- 3. Dimensions are in inches [mm]. Tolerances 2 Pl. ±.03 inch; 3 Pl. ±.015 inches.
- 4. Weight: 500 grams
- 5. Marking may contain other features or characters for internal lot control.



# Signal Generator

# SSG-8N12G-RC

50Ω

8 to 12.5 GHz -55 dBm to +23 dBm SMA Female

# **DETAILED MODEL INFORMATION IS AVAILABLE ON OUR WEBSITE**

| CLI | CV | 10 | EDI |
|-----|----|----|-----|
| CLI | CK | ш  | E K |

| Performance Data & Graphs                    | Data<br>Graphs                                        |  |  |  |
|----------------------------------------------|-------------------------------------------------------|--|--|--|
| Case Style                                   | SL3643                                                |  |  |  |
| Environmental Rating                         | ENV55                                                 |  |  |  |
| Software, User Guide &<br>Programming Manual | https://www.minicircuits.com/softwaredownload/sg.html |  |  |  |
| Regulatory Compliance                        | Refer to user guide for compliance information  (     |  |  |  |
| Support                                      | testsolutions@minicircuits.com                        |  |  |  |

#### **INCLUDED ACCESSORIES 21**

|                       | Part No.        | Description                                                                                                                  | Qty. |
|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|------|
|                       | AC/DC-6-3W      | AC/DC Grounded Power adapter, 0°C to +40°C AC Input: 100-240 V, 50/60 Hz, $I_{Max}$ = 1.2A DC Output 6±0.3 V, $I_{Max}$ = 3A | 1    |
| (See images<br>below) | CBL-3W-xx       | AC Power Cord (Select one power cord from below with each unit)                                                              | 1    |
|                       | USB-CBL-AC-7SC+ | 6.5 ft (2.0 m) USB Cable: USB type A (Male) to USB type C (Male)                                                             | 1    |
| 6)) ·                 | CBL-5FT-BMSMB+  | 5.0 ft (1.5 m) Trigger cable: BNC (Male) to SMB (Female)                                                                     | 2    |

 $<sup>{\</sup>bf 21.}\, {\bf Additional}\, quantities\, are\, available\, for\, purchase\, as\, optional\, accessories.$ 

### **AC POWER CORD OPTIONS 22**

| United States | Europe    | United Kingdom | Australia and China | Israel    |
|---------------|-----------|----------------|---------------------|-----------|
|               | 4         | 4              |                     | =         |
| CBL-3W-US     | CBL-3W-EU | CBL-3W-UK      | CBL-3W-AU           | CBL-3W-IL |

<sup>22.</sup> Select one option from the list with each unit. Please contact testsolutions@minicircuits.com if your region is not listed.



# Signal Generator

SSG-8N12G-RC

50Ω

8 to 12.5 GHz

-55 dBm to +23 dBm

**SMA Female** 

### **OPTIONAL ACCESSORIES**

|      | Part No.                   | Description                                                                            |  |
|------|----------------------------|----------------------------------------------------------------------------------------|--|
|      | USB-CBL-AC-7SC+<br>(spare) | 6.5 ft (2.0 m) USB Cable: USB type A (Male) to USB type C (Male)                       |  |
| (D)) | CBL-5FT-BMSMB+<br>(spare)  | 5.0 ft (1.5 m) Trigger cable: BNC (Male) to SMB (Female)                               |  |
| 50   | CBL-RJ45-MM-5+             | 5.0 ft (1.5 m) Ethernet cable: RJ45 (Male) to RJ45 (Male) Cat 5E cable                 |  |
|      | CBL-5FT-MMD+               | 5.0 ft (1.5 m) Cable assembly for serial control daisy chain with snap fit connectors  |  |
|      | CBL-1.5FT-MMD+             | 1.5 ft (0.45 m) Cable assembly for serial control daisy chain with snap fit connectors |  |

#### **CALIBRATION**

| Part No.        | Description                          |            |
|-----------------|--------------------------------------|------------|
| CALSSG-8N12G-RC | Calibration Service for SSG-8N12G-RC | CLICK HERE |

#### NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at https://www.minicircuits.com/terms/viewterm.html

