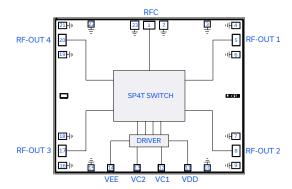


SP4T RF Switch M4SWA4-34DR-D+

DC to 30 GHz Absorptive RF Switch with Internal Driver 50Ω


THE BIG DEAL

- · Wideband, DC to 30 GHz
- Low Insertion Loss, Typ. 1.7 dB
- High Isolation, Typ. 48 dB
- · High Input IP3, Typ. +46 dBm
- Fast Rise / Fall Time, Typ. 23.1 ns / 6.7 ns

APPLICATIONS

- Radar, EW and ECM Defense Systems
- Communication Infrastructure
- Test and Measurements

FUNCTIONAL DIAGRAM

SEE ORDERING INFORMATION ON THE LAST PAGE

PRODUCT OVERVIEW

Mini-Circuits' M4SWA4-34DR-D+ is a GaAs MMIC SP4T absorptive switch with an internal driver designed for wideband operation from DC to 30 GHz. This switch has fast, nano-second switching across a wide frequency range with exceptional settling time. This model provides excellent isolation, high linearity, and is capable of withstanding +24 dBm RF input power. The M4SWA4-34DR-D+ die is suitable for chip and wire assemblies.

KEY FEATURES

Features	Advantages
Absorptive Design	Absorptive switch design enables excellent return loss on all ports, minimizing reflection at the unselected port.
High Isolation: • 48 dB Typ. RFC to RF-OUT 1/2/3/4 • 48 dB Typ. Between RF-OUT 1/2/3/4	High isolation significantly reduces leakage of power into OFF ports.
High linearity and Input Power: Input Power at P1dB, +28.0 dBm Typ. Input IP3, +46 dBm Typ. Max RF Input Power, +24 dBm CW	High linearity minimizes unwanted intermodulation products which are difficult or impossible to filter in multi- carrier environments, or in the presence of strong interfering signal from adjacent circuitry. High RF input power tolerance protects the device from damage due to unexpected spikes in signal level.
Fast RF Switching Time: Rise/Fall Time, Typ. 23.1 ns / 6.7 ns On/Off Time, Typ. 67 ns / 37 ns Settling to 0.05 dB, Typ. 104 ns	Fast switching makes this model suitable for applications where extremely fast transition between ports is required, such as automated switching networks.
Unpackaged Die	Suitable for chip and wire hybrid assemblies.

SP4T RF Switch M4SWA4-34DR-D+

DC to 30 GHz Absorptive RF Switch with Internal Driver 50Ω

ELECTRICAL SPECIFICATIONS 1,2,3 AT +25° C, V_{DD} = +3.3 V, V_{EE} = -3.3 V UNLESS NOTED OTHERWISE

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		DC		30	GHz
	0.01		0.9		
	0.1		0.9		
and the Land	1.0		1.0		.ID
nsertion Loss	10		1.7		dB
	20		2.3		
	30		2.8		
	0.01		76		
	0.1		75		
	1.0		63		
solation Between Ports, RF-OUT 1/2/3/4	10		48		dB
	20		45		
	30		48		
	0.01		76		
	0.1		75		
	1.0		64		
solation Between RFC & RF-OUT 1/2/3/4 Ports	10		48		dB
	20		49		
	30		48		
			21		
	0.01				
	0.1		21		dB
Return Loss - RFC	1.0		20		
	10		16		
	20		16		
	30		19		
	0.01		15		
	0.1		16		
Return Loss – RF-OUT 1/2/3/4 (On & Off State)	1.0		16		dB
,	10		19		
	20		15		
	30		9		
	0.01		+19.9		
	0.1		+24.5		
nput Power at P1dB	1.0		+26.8		dBm
IIPALI ONEI ALI TAD	10		+28.0		dbiii
	20		+28.1		
	30		+28.4		
	0.01		+13.9		
	0.1		+21.3		
I D I DO 1 .ID	1.0		+24.1		
nput Power at P0.1 dB	10		+25.0		dBm
	20		+25.5		
	30		+24.9		
	0.01		+33		
	0.1		+44		
nput IP3 ⁴	1.0		+45		
(P _{IN} = +5 dBm/Tone)	10		+46		dBm
IN STATE OF THE ST	20		+45		
	20		145		Ì

^{1.} Tested on Mini-Circuits Die Characterization Test Board. See Figure 3.

^{4.} Input IP3 was measured on packaged model M4SWA4-34DR+ on its Mini-Circuits Characterization Test Board TB-M4SWA434DRC+

^{2.} Bi-directional, refer to S-Parameters for actual performance.

^{3.} All RF-ports must be DC blocked or held at 0 V DC.

MMIC DIE SP4T RF Switch M4SWA4-34DR-D+

50Ω DC to 30 GHz Absorptive RF Switch with Internal Driver

DC ELECTRICAL SPECIFICATIONS⁵

Parameter	Min.	Тур.	Max.	Units
Positive Supply Voltage, V _{DD}	+3.2	+3.3	+3.4	V
Negative Supply Voltage, V _{EE}	-3.4	-3.3	-3.2	V
Positive Supply Current, I _{DD}		1.2	1.8	mA
Negative Supply Current, I _{EE}		0.8	1.4	mA
Control Voltage Low		0	+0.8	V
Control Voltage High	+1.6	+2	V _{DD}	V
Control Current (I _{C1}) Low		0		μА
Control Current (I _{C1}) High		9	21	mA
Control Current (I _{C2}) Low		0		μА
Control Current (I _{C2}) High		7	16	mA

^{5.} DC electrical performance was measured on packaged model M4SWA4-34DR+ on its Mini-Circuits Characterization Test Board TB-M4SWA434DRC+.

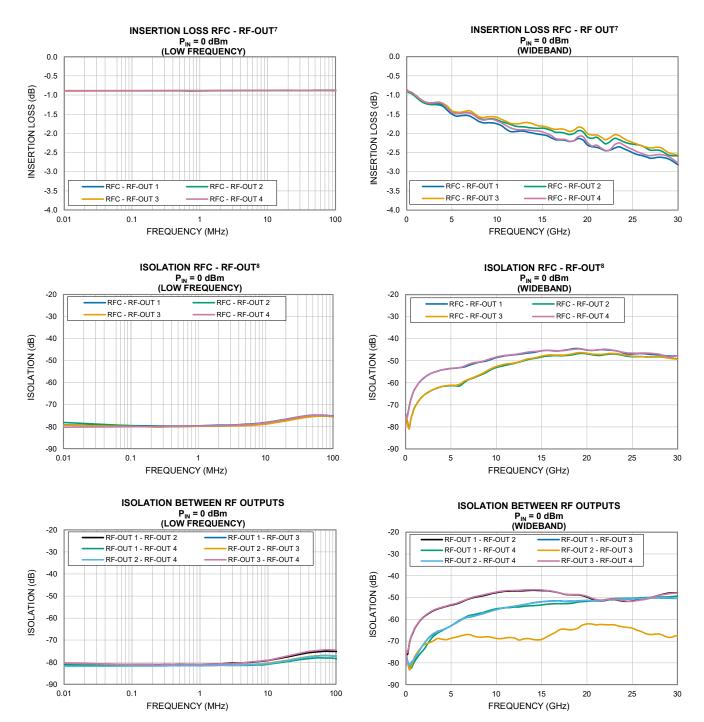
SWITCHING SPECIFICATIONS⁶

Parameter	Condition	Min.	Тур.	Max.	Units
ON Time, 50% Control to 90% RF output			67		ns
OFF Time, 50% Control to 10% RF output			37		ns
Video Leakage	RF P _{IN} at RFC = 0 dBm RF Frequency = 150 MHz Control Frequency = 1 kHz Control High = +2 V Control Low = 0 V		+4.5		mV
Rise Time, 10% to 90% of RF output			23.1		ns
Fall Time, 90% to 10% of RF output			6.7		ns
Settling time (50% VCTRL to 0.05 dB of final RF output)			104		ns
Settling time (50% VCTRL to 0.02 dB of final RF output)			446		ns

^{6.} Switching performance was measured on packaged model M4SWA4-34DR+ on its Mini-Circuits Characterization Test Board TB-M4SWA434DRC+.

TRUTH TABLE

State of V _{C1}	State of V _{C2}	RFC to RF-OUT 1	RFC to RF-OUT 2	RFC to RF-OUT 3	RFC to RF-OUT 4
Low	Low	ON	OFF	OFF	OFF
High	Low	OFF	ON	OFF	OFF
Low	High	OFF	OFF	ON	OFF
High	High	OFF	OFF	OFF	ON



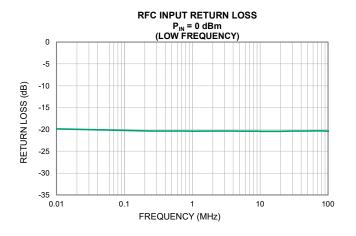
SP4T RF Switch M4SWA4-34DR-D+

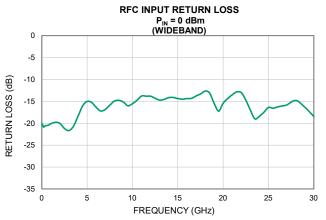
DC to 30 GHz Absorptive RF Switch with Internal Driver

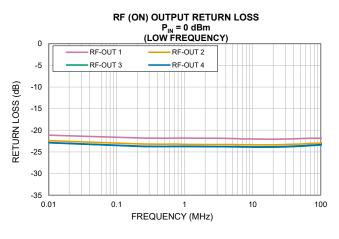
TYPICAL PERFORMANCE GRAPHS

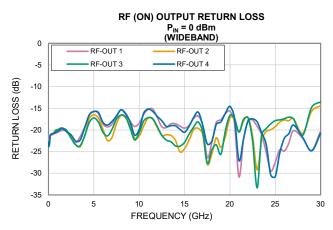
Temperature = $+25^{\circ}$ C, $V_{DD} = +3.3$ V, $V_{FF} = -3.3$ V

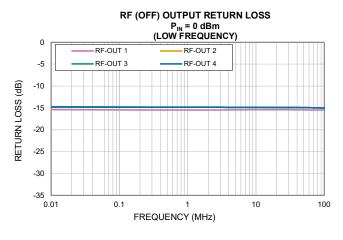
7. RF-OUT defined as either RF-OUT 1 (ON), RF-OUT 2 (ON), RF-OUT 3 (ON), or RF-OUT 4 (ON) 8. RF-OUT defined as either RF-OUT 1 (OFF), RF-OUT 2 (OFF), RF-OUT 3 (OFF), or RF-OUT 4 (OFF)

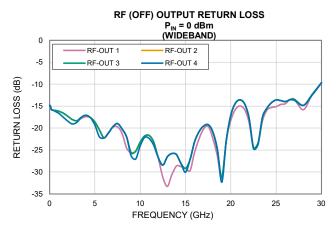


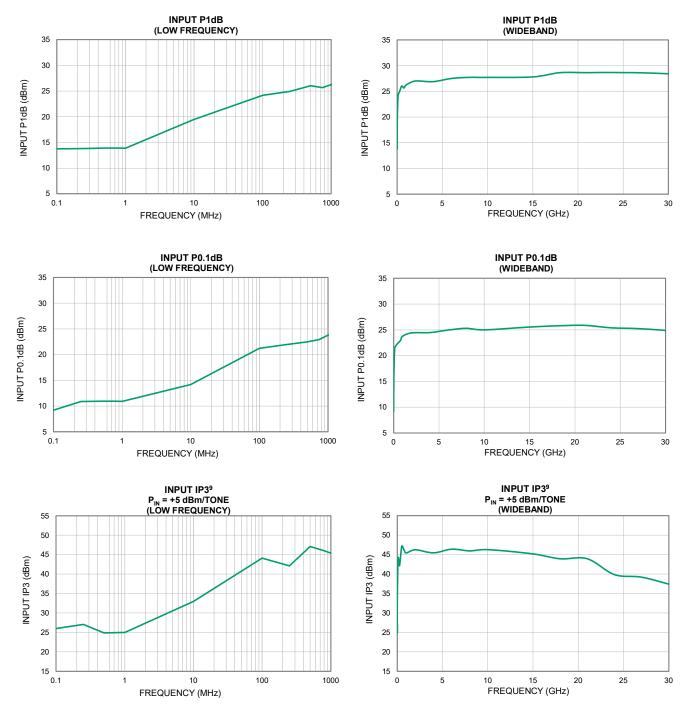

SP4T RF Switch M4SWA4-34DR-D+


DC to 30 GHz Absorptive RF Switch with Internal Driver


TYPICAL PERFORMANCE GRAPHS


Temperature = $+25^{\circ}$ C, $V_{DD} = +3.3 \text{ V}$, $V_{FF} = -3.3 \text{ V}$





SP4T RF Switch M4SWA4-34DR-D+

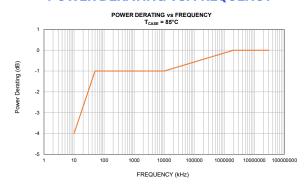
DC to 30 GHz Absorptive RF Switch with Internal Driver

TYPICAL PERFORMANCE GRAPHS

Temperature = $+25^{\circ}$ C, $V_{DD} = +3.3 \text{ V}$, $V_{FF} = -3.3 \text{ V}$

9. Input IP3 was measured on packaged model M4SWA4-34DR+ on its Mini-Circuits Characterization Test Board TB-M4SWA434DRC+

SP4T RF Switch M4SWA4-34DR-D+


DC to 30 GHz Absorptive RF Switch with Internal Driver 50Ω

ABSOLUTE MAXIMUM RATINGS¹⁰

Parameter	Ratings
Operating Temperature ¹¹	-40°C to +85°C
Storage Temperature (for Die) ¹²	-65°C to +150°C
Junction Temperature ¹³	+150°C
Total Power Dissipation	0.33 W
Through Path @ +85°C ^{14, 15}	
Input Power at RFC (CW), $(V_{DD} = +3.3 \text{ V}, V_{EE} = -3.3 \text{ V})$	+30 dBm
Input Power at RF-OUT 1/2/3/4 (CW),	
RF Applied to Selected Port (V _{DD} = +3.3 V, V _{EE} = -3.3 V)	+30 dBm
Input Power at RF-OUT 1/2/3/4 (CW),	
RF Applied to Unselected Port $V_{DD} = +3.3 \text{ V}, V_{EE} = -3.3 \text{ V}$	+30 dBm
Hot Switching @ $+85^{\circ}C^{14,15}$ Input Power at RFC (CW), (V _{DD} = $+3.3$ V, V _{EE} = -3.3 V)	+30 dBm
DC Voltage (V _{DD})	0 V to +5 V
DC Voltage (V _{EE})	-5 V to 0 V

- 10. Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.
- 11. Bottom of Die.
- 12. For die shipped in Gel-Pak see ENV-80 (limited by packaging).
- 13. Peak temperature on top of Die.
- 14. Max. Input Power was measured on packaged model M4SWA4-34DR+ on its Mini-Circuits Characterization. Test Board TB-M4SWA434DRC+ and validated at +85°C.
- 15. See derating curve at right for power derating over frequency.

POWER DERATING VS. FREQUENCY

THERMAL RESISTANCE

Parameter	Condition	Ratings
	Through Path RFC to RF-OUT 1	86.9°C/W
Thermal Resistance (O _{JC}) ¹⁶	Through Path RF-OUT 1 to RFC	55.7°C/W
	Termination Path	77.1°C/W

^{16.} Θ_{JC} = (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

ESD RATING¹⁷

255 10 (1) (1)					
	Class	Voltage Range	Reference Standard		
HBM	1B	500 V to < 1000 V	ANSI/ESDA/JEDEC JS-001-2023		
CDM	C2A	500 V to < 750 V	ANSI/ESDA/JEDEC JS-001-2022		

ESD HANDLING PRECAUTION: This device is designed to be Class 1B for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

17. Tested in 4x4 mm 24-Lead QFN style package.

SP4T RF Switch M4SWA4-34DR-D+

DC to 30 GHz Absorptive RF Switch with Internal Driver 50Ω

FUNCTIONAL DIAGRAM

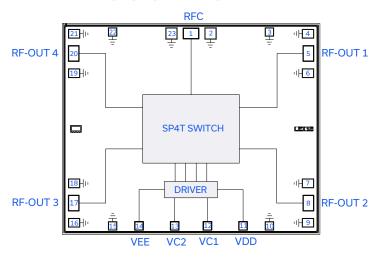


Figure 1. M4SWA4-34DR-D+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Application Description (Refer to Fig. 2)			
RFC	1	RF Input Port.			
RF-OUT 1	5	RF Output Port 1.			
RF-OUT 2	8	RF Output Port 2.			
RF-OUT 3	17	RF Output Port 3.			
RF-OUT 4	20	RF Output Port 4.			
V_{DD}	11	Positive DC Input Port.			
V _{EE}	14	Negative DC Input Port.			
V _{C1}	12	Switch control DC Input Port 1.			
V _{C2}	13	Switch control DC Input Port 2.			
GND	2-4, 6-7, 9-10, 15-16, 18-19, 21-23, & Bottom of Die	Connected to die backside through vias. Bond wires to ground are optional.			

DIE OUTLINE: inches [mm], Typical

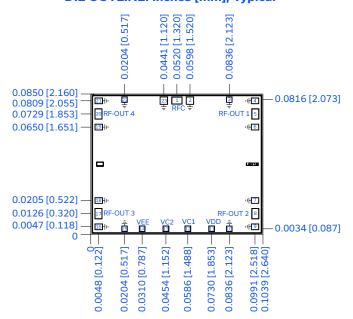


Figure 2. M4SWA4-34DR-D+ Die Outline

DIMENSIONS: inches [mm], Typical

Die Size	0.1039 x 0.0850 [2.640 x 2.160]
Die Thickness	0.0040 [0.100]
Bond Pad Sizes:	
Pads 1	0.0060 x 0.0040 [0.152 x 0.102]
Pad 2 & 23	0.0043 x 0.0043 [0.110 x 0.110]
Pads 3, 10, 11, 12, 13, 14, 15, & 22	0.0031 x 0.0031 [0.080 x 0.080]
Pads 4, 6, 7, 9, 16, 18, 19, & 21	0.0043 x 0.0033 [0.110 x 0.084]
Pads 5, 8, 17, & 20	0.0040 x 0.0060 [0.102 x 0.152]
Plating (Pads & Bottom of Die)	Gold

SP4T RF Switch M4SWA4-34DR-D+

DC to 30 GHz Absorptive RF Switch with Internal Driver 50Ω

CHARACTERIZATION AND APPLICATION CIRCUIT

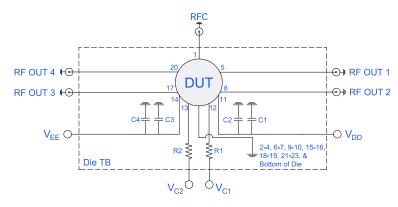


Figure 3. M4SWA4-34DR-D+ Characterization and Application Circuit

Electrical Parameters and Conditions

Insertion Loss, Isolation, Return Loss, Input Power at 1dB Compression (P1dB), & Input IP3 tested using PNA-X N5247B microwave network analyzer and P5022A vector network analyzer.

- 1. Insertion Loss, Isolation, & Return Loss: P_{IN} = 0 dBm
- 2. Input IP3 (IIP3): Two tones, spaced 1 MHz apart, +5 dBm/Tone at input

Component	Value	Size	Part Number	Manufacturer
C2, C3	100 pF	0402	GRM1555C1H101JA01D	Murata
C1, C4	0.1 uF	0402	GRM155R71C104KA88D	Murata
R1, R2	100 Ω	0402	RK73H1ETTP1000F	KOA Speer

SP4T RF Switch M4SWA4-34DR-D+

DC to 30 GHz Absorptive RF Switch with Internal Driver 50Ω

ASSEMBLY DIAGRAM

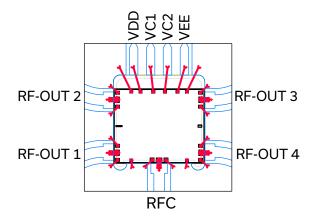


Figure 4. M4SWA4-34DR-D+ Assembly Diagram

- · Bond wire diameter: 1 mil
- Bond wire lengths from Die Pad to PCB at:
 - RFC & RF-OUT ports: 22 ± 2 mils
- · Typical Gap from Die edge to PCB edge: 3 mils
- PCB thickness and material: 6.6 mil Rogers RO4350B (Thickness: 1 oz copper on each side)

ASSEMBLY AND HANDLING PROCEDURE

- Storage Die should be stored in a dry nitrogen purged desiccator or equivalent.
- **FSD Precautions** MMIC die are susceptible to electrostatic and mechanical damage. Die are supplied in anti-static protected material, which should be opened only in clean room conditions at an appropriately grounded anti-static workstation.
- Die Handling and Attachment Devices require careful handling using tools appropriate for manipulating semiconductor chips. It is recommended to handle the chips along the edges with a custom designed collet.

The die mounting surface must be clean and flat. Using conductive silver-filled epoxy, apply sufficient adhesive to meet the required bond line thickness, fillet height and coverage around the total periphery of the device. The recommended epoxy is Ablebond 84-1LMISR4 or equivalent. Parts should be cured in a nitrogen-filled atmosphere per manufacturer's recommended cure profile.

Wire Bonding Openings in the surface passivation above the gold bond pads are provided to allow wire bonding to the die. Thermosonic bonding is recommended with minimized ultrasonic content. Bond force, time, ultrasonic power and temperature are all critical parameters. The suggested interconnect is pure gold, 1 mil diameter wire. Bonds are recommended to be made from the bond pads on the die to the package or substrate. All bond wire length and bond wire height should be kept as short as possible, unless specified by design, to minimize performance degradation due to undesirable series inductance.

MMIC DIE SP4T RF Switch M4SWA4-34DR-D+

DC to 30 GHz Absorptive RF Switch with Internal Driver

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASHBOARD. CLICK HERE

	Data			
Performance Data & Graphs	Graphs			
	S-Parameter (S5P Files) Data Set (.zip file)			
Case Style	Die			
RoHS Status	Compliant			
	Quantity, Package	Model No.		
	Gel - Pak: 5, 10, 50, or 100 KGD*	M4SWA4-34DR-DG+		
Die Ordering and Packaging Information	Medium [†] , Partial wafer: KGD* <418	M4SWA4-34DR-DP+		
	Full wafer [†]	M4SWA4-34DR-DF+		
	[†] Available upon request contact sales representative. Refer to <u>AN-60-067</u>			
Die Marking	LEX1E			
Environmental Ratings	ENV-80			

Known Good Die ("KGD") means that the die in question have been subjected to Mini-Circuits DC test performance criteria and measurement instructions and that the parametric data of such die fall within a predefined range. While DC testing is not definitive, it does provide a high degree of confidence that die are capable of meeting typical RF electrical parameters specified by Mini-Circuits.

Notes

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained there in. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms
- D. Mini-Circuits does not warrant the accuracy or completeness of the information, text, graphics and other items contained within this document and same are provided as an accommodation and on an As is basis, with all
- E. Purchasers of this part are solely responsible for proper storing, handling, assembly and processing of known good die (KGD) (including, without limitation, proper ESD preventative measures, die preparation, die attach, wire bonding and related assembly and test activities), and Mini-Circuits assumes no responsibility therefor or for environmental effects on KGD.
- F. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation d/b/a Mini-Circuits. All other third-party trademarks are the property of their respective owners. A reference to any thirdparty trademark does not constitute or imply any endorsement, affiliation, sponsorship, or recommendation by any such third-party of Mini-Circuits or its products.

