

Mini-Circuits' Surface Mount Thin-Film filters offer low insertion loss and high

rejection realized via Thin-Film on Alumina substrate, using a sputtering process

that can guarantee an enhanced Q and repeatable performance. Low pass, high pass, and bandpass surface mount thin-film designs can be realized with this technology up to 40 GHz in a small form factor helping customers achieve their SWaP objectives. Using our high quality thin-film manufacturing process we can

Mini-Circuits 50Ω

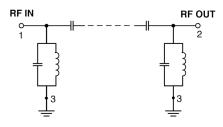
8200 to 9800 MHz

KEY FEATURES

- Low Passband Insertion Loss of 1.4 dB Typ.
- High Rejection of 54 dB Typ.
- Good Return Loss of 15 dB Typ.
- Small Size, 5.59 x 8.13 x 2.03 mm

APPLICATIONS

- X-Band Radar
- Test and Measurements


PRODUCT OVERVIEW

ABF-9G+

Generic photo used for illustration purposes only

FUNCTIONAL DIAGRAM

ELECTRICAL SPECIFICATIONS^{1,2,3} AT +25°C

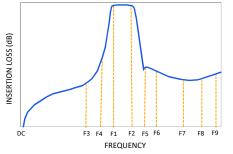
guarantee repeatability on large batches of filters.

Parameter		F#	Frequency (MHz)	Min.	Тур.	Max.	Units
Pass Band	Center Frequency ⁴	_	_	_	9000	_	MHz
	Insertion Loss	F1-F2	8200 - 9800	_	1.4	2.5	dB
	Return Loss	F1-F2	8200 - 9800	_	15	_	dB
Stopband, Lower	Rejection	DC-F3	DC - 6400	40	54	_	dD
		F3-F4	6400 - 6900	20	39	_	dB
Stopband ,Upper	Rejection	F5-F6	11300 - 11700	20	47	_	
		F6-F7	11700 - 17000	40	47	_	10
		F7-F8	17000 - 20000	_	30	_	dB
		F8-F9	20000 - 23000	_	20	_	

1. Tested on Evaluation Board P/N TB-ABF-9G+ with feedline losses removed by normalization of S12 and S21 traces to mesurement of TB thru-line.

2. This filter is bi-directional RF1 and RF2 ports may be interchanged, see S-Parameters for actual performance.

3. This component is not intended for use as a DC-blocking circuit element. In applications where DC voltage and/or current is present at either the input or output ports, external DC blocking capacitors are required.


4. Typical variation ±3%.

ABSOLUTE MAXIMUM RATINGS⁵

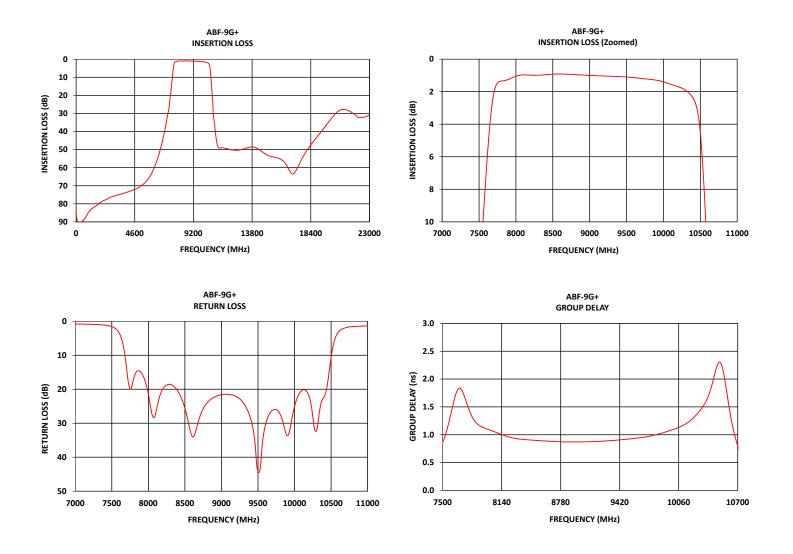
Parameter	Ratings		
Operating Temperature	-55°C to +125°C		
Storage Temperature	-55°C to +125°C		
Input Power ⁶	12.5 W Max. at 25°C		

5. Permanent damage may occur if any of these limits are exceeded.

6. Power rating applies only to signals within the passband. Derated power at +125°C is 2.6 W

TYPICAL FREQUENCY RESPONSE AT +25°C

THIN FILM SURFACE MOUNT


Bandpass Filter

Mini-Circuits 50Ω

8200 to 9800 MHz

TYPICAL PERFORMANCE GRAPHS AT +25°C

Mini-Circuits

8200 to 9800 MHz

FUNCTIONAL DIAGRAM

50Ω

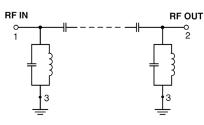


Figure 1. ABF-9G+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Description
RF1 ²	1	Connects to RF Input Port
RF2 ²	2	Connects to RF Output Port
GROUND	3	Connects to Ground on PCB, (See drawing PL-764)
NC	_	No connection, not used internally. See drawing PL-764 for connection to PCB

SUGGESTED PCB LAYOUT (PL-764)

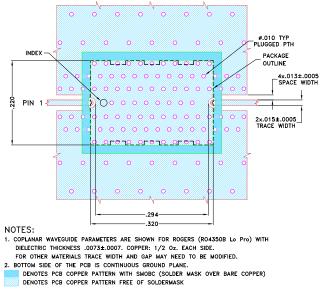
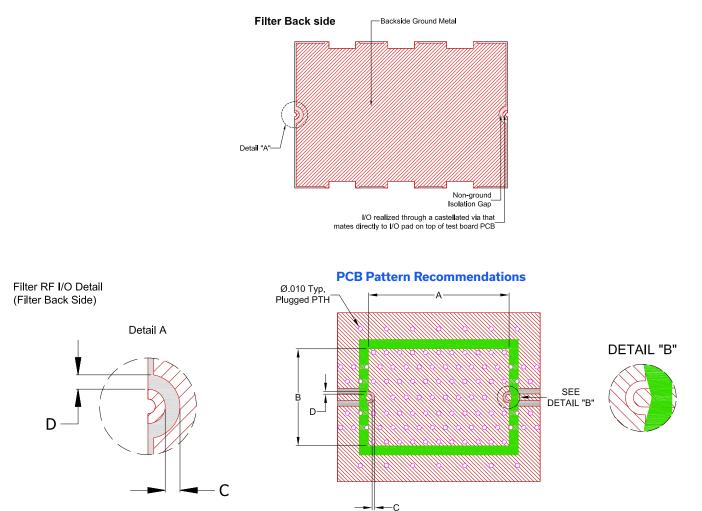



Figure 2. Suggested PCB Layout PL-764

CASE STYLE DRAWING

PRODUCT MARKING*: ABF-9G


*Marking may contain other features or characters for internal lot control.

 \square Mini-Circuits 50 Ω

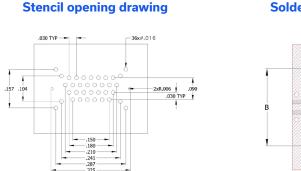
8200 to 9800 MHz

RECOMMENDED PCB LAYOUT PATTERN FOR FILTER

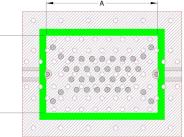
- 1) Customer PCB's ground pattern length (dimension A) can be similar to filter length.
- 2) Customer PCB's ground pattern width (dimension B) can be similar to filter width.
- 3) Dimensions C and D on Filter RF I/O detail and Customer PCB pattern can be closely match. The dimensions of C and D on the Customer PCB pattern can be slightly larger to account for component alignment tolerance (ground metal can be pulled back from RF I/O trace).
- 4) Recommend to use Solder mask at Customer PCB at outer area of filter pattern/ footprint with a clearance of about 1.25mil at each side. (Tighter registration tolerance required for solder mask)
- 5) Recommended to use Solder mask at I/O of Customer PCB as per above diagram (refer detail B).

Mini-Circuits

THIN FILM SURFACE MOUNT Bandpass Filter



Mini-Circuits


8200 to 9800 MHz

COMMENTS ON COMPONENT HANDLING AND SOLDER ATTACH

- 1) Avoid using soldering iron directly to the ceramic filter. This would lead to development of crack in the component due to thermal shock.
- 2) Vacuum pick-up tool or plastic tweezers are recommended for handling the components. Extra care should be taken not to scratch the filter or metal area.
- 3) Use 2-3 mil thickness stencil plate and screen print the solder. Refer below picture for recommended stencil pattern to get the best solder attachment.

Solder location after screen print

- 4) Plugged ground vias in the PWB will improve attachment consistency.
- 5) Recommended to have a similar or closer test board material and thickness (refer Mini-Circuits evaluation board for details) to minimize the CTE over the temperature range.

Mini-Circuits

50Ω

8200 to 9800 MHz

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASHBOARD.

CLICK HERE

	Data		
Performance Data and Graphs	Graphs		
	S-Parameter (S2P Files) Data Set (.zip file) De-embedded to device pads		
Case Style	UC2731 Lead Finish: Gold over Nickel Plate.		
RoHS Status	Compliant		
Tape and Reel	TR-F003		
Suggested Layout for PCB Design	PL-764		
Evaluation Board	TB-ABF-9G+		
	Gerber File		
Environmental Rating	ENV120		

NOTES

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

